

Robust Model Predictive Control and Dynamic Real-time Optimization: Applications to Energy Processes

L. T. Biegler Carnegie Mellon University June 21, 2022

Overview

- 1. Dynamic Optimization and Nonlinear MPC
 - Vehicle for dynamic optimization on-line
 - Need fast on-line computations
 - Need to enforce stability and robustness
- 2. NMPC for CO₂ Adsorption/Capture
 - Time critical PDE modeling and control
 - Fast NMPC and MHE with advanced-step concepts
- 3. Economic NMPC for Distillation
 - Concepts for dynamic optimization and stability
 - Ensuring (robustly) stable eNMPC formulations
 - Performance comparisons
- 4. Hydraulic fracturing and NMPC
 - Solution strategies for multistage NMPC under uncertainty model properties
 - Guaranteed performance under uncertainty

Nonlinear Model Predictive Control (NMPC)

3

NMPC Estimation and Control

Nonlinear Model Predictive Control (NMPC)

MPC - Background

Embed dynamic model in moving horizon framework to drive process to desired state

- Generic MIMO controller
- Direct handling of input and output constraints
- Relatively slow time-scales in chemical processes

Different Model types

- · Linear Models: Step Response (DMC) and State-space
- Empirical Models: Neural Nets, Volterra Series
- Hybrid Models: linear with binary variables, multi-models
- Nonlinear First Principle Models direct link to off-line planning and optimization

- Nonlinear MPC Pros and Cons
- + Operate process over wide range (e.g., startup and shutdown)
- + Vehicle for Dynamic Real-time Optimization
- Need Fast NLP Solver for Time-critical, on-line optimization
- Computational Delay from On-line Optimization degrades performance

Model-based Estimation and Control: MHE and NMPC

Advanced Step Nonlinear MPC (Zavala, B., 2009)

7

Solve NLP(k) in <u>background</u> (between t_k and t_{k+1})

Advanced Step Nonlinear MPC (Zavala, B., 2009)

$$\begin{bmatrix} W_k & A_k & -I \\ A_k^T & 0 & 0 \\ Z_k & 0 & X_k \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \lambda \\ \Delta z \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ x_{k+1|k} - x(k+1) \\ 0 \end{bmatrix}$$

8

Solve NLP(k) in <u>background</u> (between t_k and t_{k+1}) Sensitivity to update problem <u>on-line</u> to get (u(k+1))

Advanced Step Nonlinear MPC (Zavala, B., 2009)

x(k) u_U u(k+1) $u_{N-2}u_{N-2}$ u(k) $\neg u_L$ t_k $t_{k+1} t_{k+2}$ t_{k+N} k+Nmin $J(x(k+1), u(k+1)) = F(x_{k+N+1|k+1}) + \sum \psi(x_{l|k+1}, v_{l|k+1})$ s.t. $x_{k+2|k+1} = f(x(k+1), u(k+1))$ $x_{l+1|k+1} = f(x_{l|k}, v_{l|k}), \quad l = k+2, \dots k+N$ $x_{l|k+1} \in X$, $v_{l|k+1} \in U$, $x_{k+N+1|k+1} \in X_f$ Also extends to Advanced Step MHE to update $\hat{x}_{N|k-1}$ and $\Pi_{N|k-1}$ Solve NLP(k) in <u>background</u> (between t_k and t_{k+1}) Sensitivity to update problem <u>on-line</u> to get (u(k+1)) Solve NLP(k+1) in <u>background</u> (between t_{k+1} and t_{k+2})

CAPRESE: Control and Adaptation with PREdictive SEnsitivity (David Thierry)

NMPC for CO₂ Capture (Bubbling Fluid Bed) (Thierry, B.)

- Set-point on CO₂ removal fraction
- Controls: valve opening inlet and outlet gas
- Discretized with 5 spatial finite elements and 3 point Radau collocation in time
- 315 states for the current discretization
- Full-state feedback control, stage cost tracked in objectivecontrol –
- 46510 var. / 46500 eqns.

Bubble Fluid Bed MHE Results: Ideal vs. asMHE

asMHE

9.23

13.02

12.99

2.4

2.4

- Use predicted measurement to solve NLP offline (IPOPT)
- Update optimum estimated state on-line using NLP sensitivity correction (sIPOPT/k_aug)
- asMHE: similar performance at ~10% online cost ٠

asNMPC vs Ideal NMPC (noise: $\sigma = 1\%$)

BFB Results: asNMPC: similar performance

0.55

asNMPC vs Ideal NMPC (noise: $\sigma = 1\%$)

BFB Results: asNMPC: similar performance

Use predicted state to solve NLP <u>offline</u> (IPOPT)
Update optimum control <u>on-line</u> using NLP sensitivity correction (sIPOPT/k_aug)
Similar Performance with < 5% of on-line computation

0.35	_									_
0.3 ₀) 10	20	30	40 samp	ling tin	1e ⁶⁰	70	80	90	100

	Average CPUs		
	Ideal NMPC	asNMPC	
IPOPT	6.37	6.37	
k_aug (rH)	0	0	
k_aug (sens)	0	5.6	
dot_sens (online)	0	0.3	
Online	6.37	0.3	

40 50 sampling time

60

70

90 100

20

30

D-RTO with Economic Objectives \rightarrow Beyond NMPC Tracking

Economic NMPC (eNMPC)

NLP formulation $\min_{v_l, z_l} \Psi(z_N) + \sum_{l=0}^{N-1} \psi(z_l, v_l)$ s.t. $z_{l+1} = f(z_l, v_l), l = 0, ..., N-1$ $z_0 = x(k)$ $z_l \in X, v_l \in U, l = 0, ..., N-1, z_N \in X_N$

where $\psi(x, u)$, $\Psi(x)$ are economic terms

Challenge: $\alpha_p(|\mathbf{x}|) \leq \psi(\mathbf{x}, \mathbf{u}) \leq \alpha_q(|\mathbf{x}|)$ no longer holds NMPC Stability Results do not carry over to eNMPC

Can be overcome by regularizing stage costs, compromise D-RTO

Reformulation of eNMPC with Stability Constraints (Yang, Griffith, Zavala, B., 2019)

$$\min_{z_l,v_l} \sum_{l=0}^{N-1} \psi^{ec}(z_i,v_i)$$

s.t. $z_{l+1} = f(z_l,v_l,0) \quad l = 0,...,N-1$
 $z_0 = x_k$
 $z_l \in \mathbb{X}, v_l \in \mathbb{U} \quad l = 0,...,N-1$
 $z_N = x_s$
$$\sum_{l=0}^{N-1} \psi^{tr}(z_l,v_l) - V(k-1,\mathbf{w}_{k-1},x_0)$$

 $\leq -\delta \psi^{tr}(x_{k-1},u_{k-1})$

- Add strict decrease of tracking Lyapunov function
- No regularization applied, no modification of economic stage costs
- Leads to nominal and ISS (robust) stability results!

Economic NMPC: Two Column Distillation (Yu, Griffith, B., 2020)

41 trays, 246 states
4 manipulated variables: LT1, VB1, LT2, VB2
3 output variables: D1, D2, B2
Additive noise in model
Hessian of Lagrange function of steady state problem has λ_{min} = -1.414
Min –(Net sales)

 $\begin{aligned} \min_{u} \ J(u) &= p_F F + p_V (VB1 + VB2) - (p_A D1 + p_B D2 + p_C B2) \\ s.t. \ Massbalance, \ Equilibrium \\ x_A &\geq x_{A,min}, \ x_B &\geq x_{B,min}, \ x_C &\geq x_{C,min} \\ 0 &\leq LT1, LT2 &\leq LT_{max}, \ 0 &\leq VB1, VB2 &\leq VB_{max} \end{aligned}$

R.. B. Leer. Self-optimizing control structures for active constraint regions of a sequence of distillation columns. Master's thesis, NTNU, 2012.

Comparison of eNMPC Reformulations

- Baseline tracking to steady state optimum
- Pure economic NMPC has best economic performance, but no steady state nor stability guarantee
- eNMPC-sc similar to pure economic case, goes to steady state, robustly stable!
- Regularization of stage costs (eNMPC-rr, eNMPC-fr) improves over tracking with intermediate results

K = 9, N = 25	$\sum_{k=0} (\Psi (x_k, u_k))^{-1}$	$-\psi_{ss}$) Average CFU sec.
Tracking	-20.7330	69.0
eNMPC-fr	-22.6650	72.0
eNMPC-rr	-26.2324	181.8
eNMPC-sc, $\delta=0.01$	-28.6706	309.2
Economic	-28.6458	272.3

< = 9, N = 25	$\sum_{k=0}^{K} (\psi^{ea})$	$c(x_k,u_k) - $	ψ_{ss}^{ec})	Average	CPU sec.
---------------	------------------------------	-----------------	--------------------	---------	----------

Standard NMPC – Treatment of Uncertainty?

Nominal models with optimal performance Sensitive to disturbances, model mismatch, uncertain inputs, etc.

Multi-stage MPC (msNMPC) – Stochastic Programming Formulation (Lucia, Engell et al., 2013)

Scenario branching: effect of uncertainty while optimizing control input

Multi-stage MPC (msNMPC) – Stochastic Programming Formulation (Lucia, Engell et al., 2013)

Scenario branching: effect of uncertainty while optimizing control input

Parallel KKT Decomposition for Stochastic Optimal Control

SOC problems become very large very quickly.

• Problem size (spatial discretization) x time discretization x # scenarios

Parallelize solution with Schur-Complement decomposition

- Schur-Complement based interior point algorithm using PyNumero and Parapint
- Exploits structure of KKT system induced by scenarios
- Parallel implementation using MPI

Can be accelerated through scenario generation and sensitivity assisted decomposition

Newton StepSchur Complement
$$\begin{bmatrix} \mathbf{K}_0 & \dots & N_0 \\ \mathbf{K}_1 & \dots & N_1 \\ \vdots & \vdots & \ddots & \vdots \\ & \mathbf{K}_c & N_c \\ N_0^T & N_1^T & \dots & N_c^T \end{bmatrix} \begin{bmatrix} \Delta \mathbf{s}_0 \\ \Delta \mathbf{s}_1 \\ \vdots \\ \Delta \mathbf{s}_c \\ \gamma \end{bmatrix} = - \begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_c \\ 0 \end{bmatrix}$$
 $\sum_{c \in \mathbb{C}} (N_c^T \mathbf{K}_c^{-1} N_c) \gamma = -\sum_{c \in \mathbb{C}} (N_c^T \mathbf{K}_c^{-1} r_c)$ Backsolve $\mathbf{K}_c \Delta \mathbf{s}_c \\ \mathbf{N}_0^T & N_1^T & \dots & N_c^T \end{bmatrix}$ $\begin{bmatrix} \Delta \mathbf{s}_0 \\ \Delta \mathbf{s}_1 \\ \vdots \\ \Delta \mathbf{s}_c \\ \gamma \end{bmatrix} = - \begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_c \\ 0 \end{bmatrix}$ $\mathbf{K}_c \Delta \mathbf{s}_c = -(r_c + N_c \gamma), \forall c \in \mathbb{C}$

Rodriguez, J., Parker, R., Laird, C., Nicholson, B., Siirola, J., Bynum, M., "Scalable Parallel Nonlinear Optimization with PyNumero and Parapint", under review, http://www.optimization-online.org/DB_HTML/2021/09/8596.html.

eNMPC under Uncertainty: Hydraulic Fracturing for Natural Gas Extraction (Lin, B., 2022)

- Advantages
 - 1. Increase production of hydrocarbons
 - 2. Considerable economic benefits
- Difficulties and concerns
 - 1. Extremely high pressure (625 atm)
 - 2. Rock formation is nonhomogeneous

Hydraulic Fracturing Model

Fracture geometry by PKN model

Local mass balance

$$\frac{\partial q}{\partial x} + u + \frac{\partial A}{\partial t} = 0$$

Global mass balance

$$q_{leakoff} + q_{storage} = q_{total}$$

Mass transfer

- Proppant, C_p
- + Friction reducer (FR), C_{FR}

Changes of fluid properties

- · Density
- Viscosity

Drag reduction caused by FR

$$\frac{1}{DR} = \frac{1}{DR_{lim}} + \frac{K_0}{Re \ C_{FR}} + \frac{K_1}{Re} + \frac{K_2}{C_{FR}}$$

• Wellhead pressure

$$P_{head} = P_{FR}(t, x = 0) + \sigma - \rho g H_{well} + P_{frict}$$

Hydraulic Fracturing Model

PKN model

$$-\frac{E}{2\mu H\pi^{3}(1-\nu^{2})}\frac{\partial^{2}\overline{w}^{4}}{\partial x^{2}} + \frac{\partial\overline{w}}{\partial t} = 0$$
$$\int_{0}^{L} \overline{w} \, dx = \frac{q_{f}t}{H}$$

• Mass transport $v_{slurry} = \frac{2E}{\pi^{3}\mu H(1-v^{2})} \overline{w}^{2} \frac{\partial \overline{w}}{\partial x}$ $v_{s} = \frac{(1-C_{p})^{2} (\rho_{sd} - \rho_{pf}) g d^{2}}{10^{1.82} C_{p}} 18 \mu$ $v_{c} = v_{slurry} - (1-C_{p})v_{s}$ $\frac{\partial (\overline{w}C_{p})}{\partial t} + \frac{\partial (\overline{w}C_{p}v_{c})}{\partial x} = 0$ $\frac{\partial (\overline{w}C_{FR})}{\partial t} + \frac{\partial (\overline{w}C_{FR}v_{c})}{\partial x} = 0$ • Changes of fluid properties

$$\mu = \mu_0 \left(1 - \frac{c_p}{C_{max}}\right)^{-\alpha}$$

$$\rho = C_p \rho_{sd} - (1 - C_p) \rho_{pf}$$

• Drag reduction

$$\frac{1}{DR} = \frac{C_{FR} + K_2 DR_{lim}}{DR_{lin} C_{FR}}$$

$$\Delta P_{head} = \Delta P_s \left(1 - DR\right)$$

Wellhead pressure

$$P_{fr} = \frac{16\mu q_f H_{well}}{\pi R^4} (1 - DR)$$

$$P_s = \frac{2E}{\pi H (1 - v^2)} \overline{w} + \sigma - \rho g H_{well} + \sigma$$

IC1: L (t = 0) = 0IC2: $\overline{w} (t = 0, x) = 0$ IC3: $C_p (t = 0, x) = 0$ IC4: $C_{FR}(t = 0, x) = 0$

BC1:
$$\overline{w} (t, x = L) = 0$$

BC2: $q (t, x = 0) = q_f$
BC3: $C_p(t, x = 0) = \hat{C}_p$
BC4: $C_{FR}(t, x = 0) = \hat{C}_{FR}$

 P_{fr}

Closed loop control of hydraulic fracturing process Standard eNMPC

Goal: minimize operation time with the least amount of FR

 $\psi(v_l) = (W + q_f(l)\hat{C}_{FR}(l))h_k$ for standard NMPC

 $\psi(v_l^c) = (W + q_f^c(l)\hat{C}_{FR}^c(l))h_k^c$ for multistage NMPC

Control input: q_f , \hat{C}_p , \hat{C}_{FR}

Process state: $L, \overline{w}, C_p, C_{FR}, P_{head}$

Operating constraints

	Max.	Unit
P_{head}	6.34×10^{7}	Pa
qf	15.9	m^3/min
\hat{C}_{propp}	10.0	ppga
$\Delta q f$	3.18	m^3/min^2
$\Delta \hat{C}_{propp}$	1.25	ppga/min

- Endpoint constraints: L, \overline{w}, M_p
- Shrinking horizon:
 - Horizon shrinks one step at each time
 - N = 35 k, h_k : sampling time
- Uncertain parameter: Young's modulus, E (Pa)

Deviation	E values (Pa)
-5%	2.28 x 10 ¹⁰
Nominal	2.40 x 10 ¹⁰
+5%	2.52 x 10 ¹⁰

- Discretize the model
 - Space: finite difference
 - Time: implicit Euler discretization

Standard NMPC under uncertainty

- Standard NMPC performs well without no process-controller mismatch
- All final requirements are satisfied
- Wellhead pressure remains within the bound
- When parameter mismatch exists, standard NMPC fails to meet the final requirements
- Pressure violation occurs in the max realization case

Dangerous

Multi-stage MPC (msNMPC) – Stochastic Programming Formulation (Lucia, Engell et al., 2013)

Scenario branching: effect of uncertainty while optimizing control input

Closed loop control of hydraulic fracturing process Multi-step eNMPC

Goal: minimize operation time with the least amount of FR

 $\psi(v_l) = (W + q_f(l)\hat{C}_{FR}(l))h_k \qquad \text{f}$

for standard NMPC

 $\boldsymbol{\psi}(\boldsymbol{v}_l^c) = (W + q_f^c(l)\hat{\boldsymbol{C}}_{FR}^c(l))\boldsymbol{h}_k^c$

for multistage NMPC

Control input: q_f , \hat{C}_p , \hat{C}_{FR}

Process state: $L, \overline{w}, C_p, C_{FR}, P_{head}$

Operating constraints

	Max.	Unit
P_{head}	6.34×10^{7}	Pa
qf	15.9	m^3/min
\hat{C}_{propp}	10.0	ppga
$\Delta q f$	3.18	m^3/min^2
$\Delta \hat{C}_{propp}$	1.25	ppga/min

- Endpoint constraints: L, \overline{w}, M_p
- Shrinking horizon:
 - Horizon shrinks one step at each time
 - N = 35 k, h_k : sampling time
- Uncertain parameters: Young's modulus, E (Pa) Poisson's ratio v

Deviation	E values (Pa)	v values		
-5%	2.28 x 10 ¹⁰	0.19		
Nominal	2.40 x 10 ¹⁰	0.20		
+5%	2.52 x 10 ¹⁰	0.21		

- Discretize the model
 - Space: finite difference
 - Time: implicit Euler discretization

Guaranteed Performance under Uncertainty

	L[m]	\overline{w}	M_p [ton]	$\sum_{k=0}^{n} h_k \ [min]$	$\sum_{k=0}^{n} C_{FR}(k) [ppm]$
Goal	495.4	—	328.2		-
$N_r = 1, d = E$	506.8	satisfied	328.2	72.17	179.51
$N_r = 2, d = E$	506.6	satisfied	328.2	72.16	181.44
$N_r = 1, d = [E, v]^T$	508.6	satisfied	328.2	72.22	195.06

- Multistage NMPC for probabilistic simulation performs well even when uncertainty is random and time-variant
- More degrees of freedom are required to maintain robustness when two uncertainties are involved
- ✤ No significant performance difference between robust horizons $N_r = 1 \text{ or } 2$

Summary and Conclusions

Dynamic optimization facilities implemented in IDAES

Using PyomoDAE, CasADi and CAPRESE tools

Demonstrates advantages of full discretization optimization approach

Leverages capabilities of large-scale decomposition & algorithms

Extends online dynamic optimization under uncertainty and robust NMPC

Demonstrated on challenging non-conventional energy applications

- CO₂ capture in BFBs (demanding first principle PDE models)
- Real-time dynamic optimization for distillation systems
- On-line optimization for Hydraulic Fracturing (uncertainty guarantees)