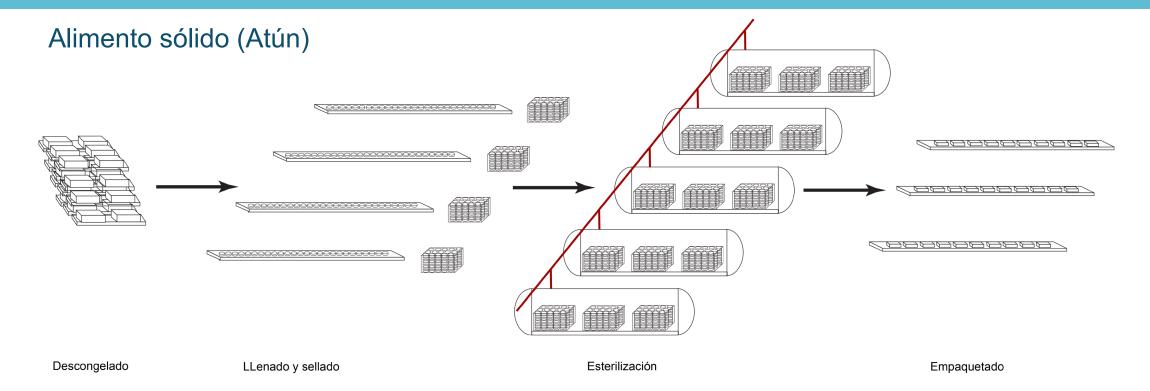
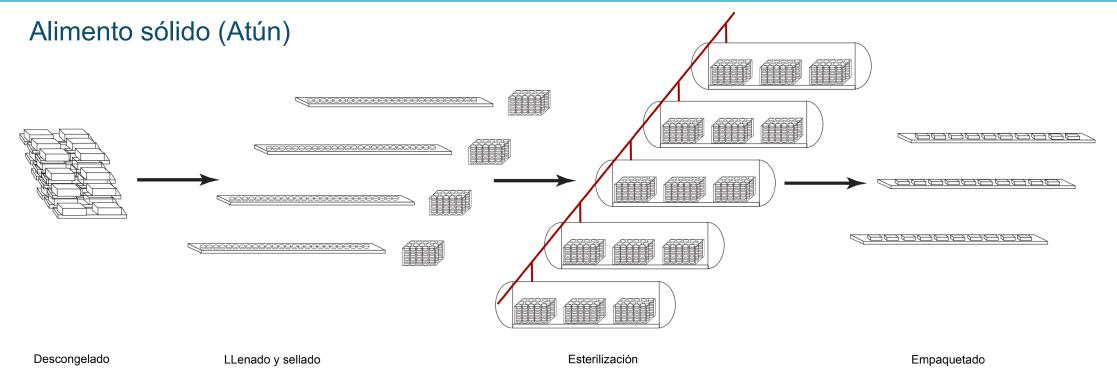


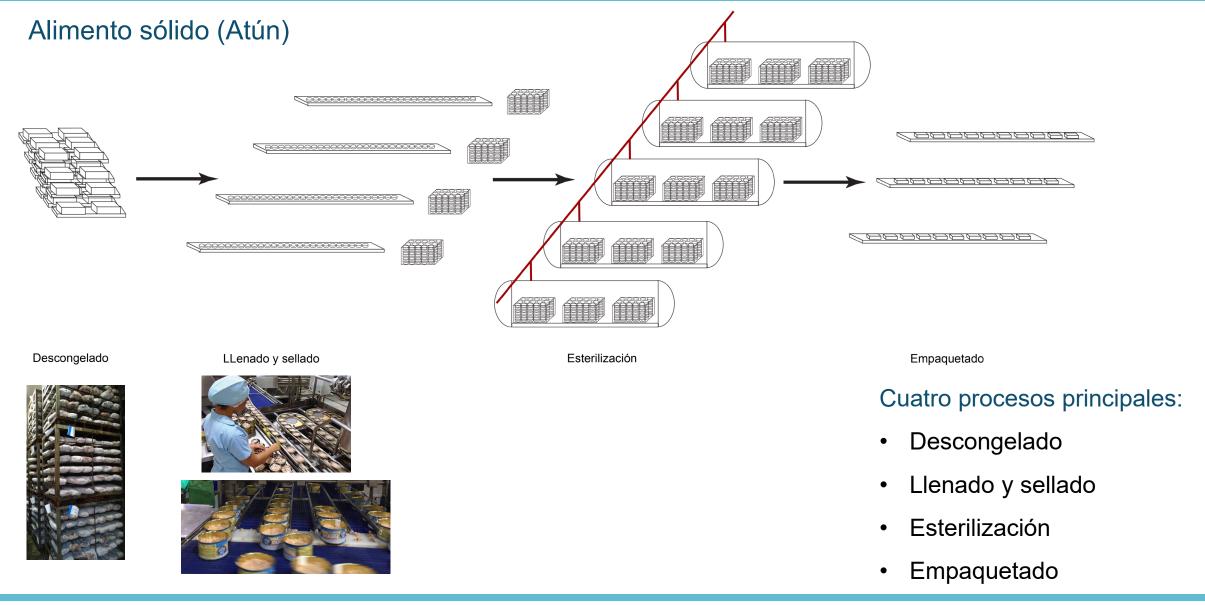
Optimización de la esterilización térmica de alimentos considerando variabilidad entre productos

Workshop final 20-21 junio, 2022

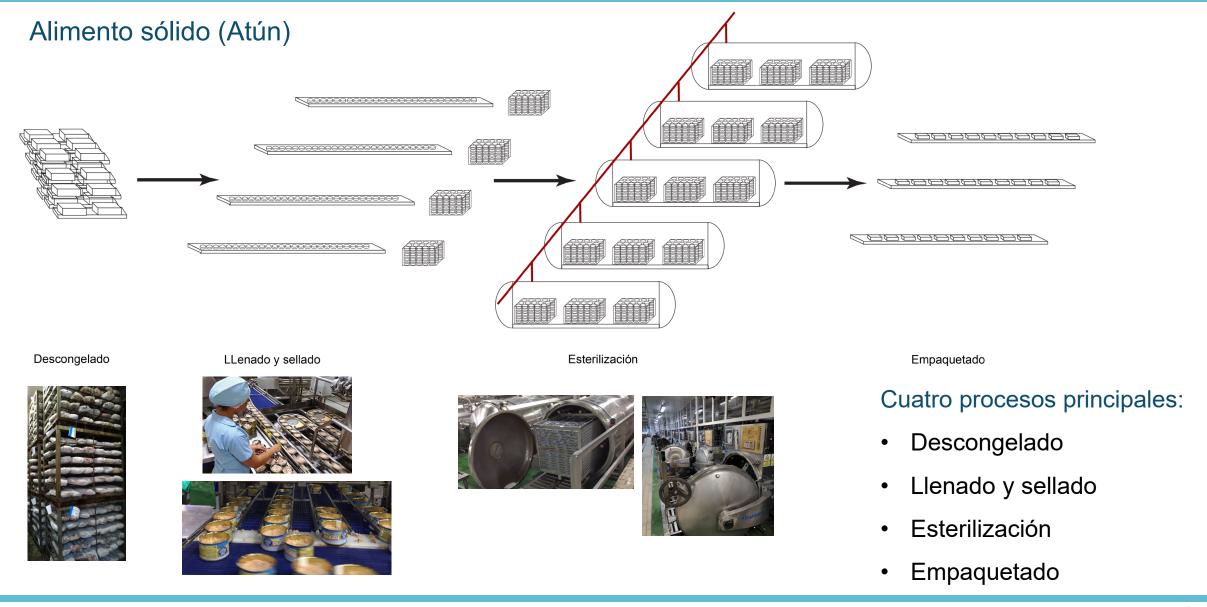
- Descripción breve de la esterilización de alimentos envasados
 - ✓ Procesos en una conservera
 - ✓ Proceso de esterilización
- Variabilidad en el producto (lata)
 - ✓ Causas de la variabilidad
 - ✓ Caracterización de la variabilidad
- Optimización del proceso teniendo en cuenta variabilidad
 - ✓ Optimización multiobjetivo
 - ✓ Optimización dinámica basada en eventos

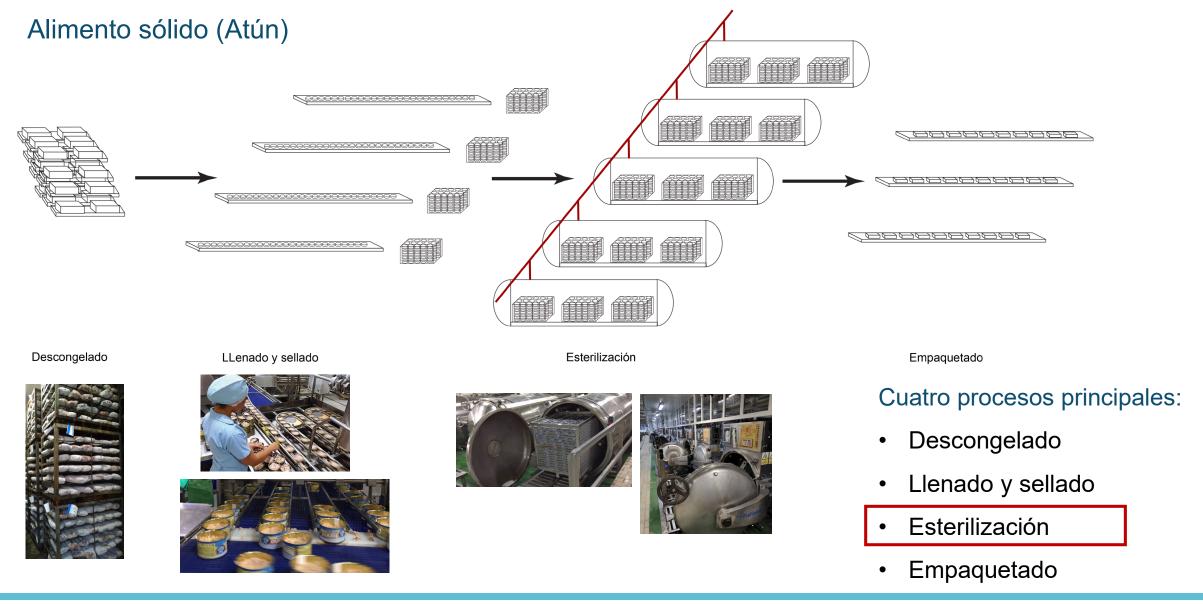


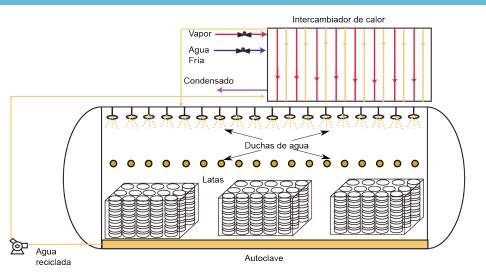


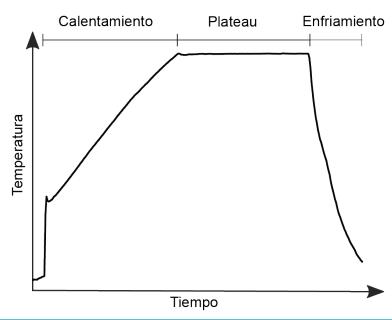


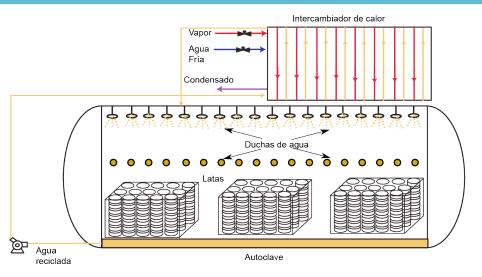
- Descongelado
- Llenado y sellado
- Esterilización
- Empaquetado

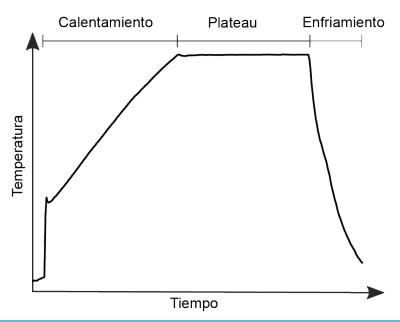








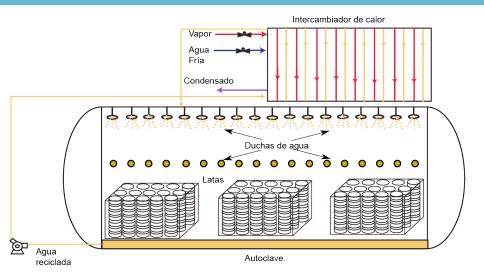

El proceso

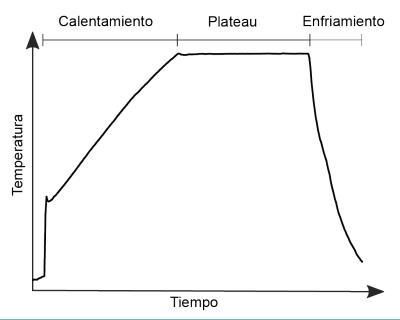

- ✓ Uso de vapor saturado para calentar agua (PHE)
- ✓ El agua entra en el autoclave (duchas) → Crece la temperatura
- ✓ Se matan las bacterias (efecto deseado)
- ✓ Se degrada la calidad del producto (efecto no deseado)
- ✓ Se consume energía y tiempo (efecto no deseado)
- ✓ Se enfría el autoclave → Agua fría en el PHE

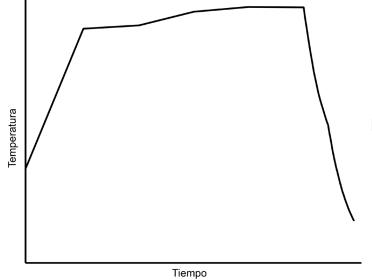
El proceso

- ✓ Uso de vapor saturado para calentar agua (PHE)
- ✓ El agua entra en el autoclave (duchas) → Crece la temperatura
- ✓ Se matan las bacterias (efecto deseado)
- ✓ Se degrada la calidad del producto (efecto no deseado)
- ✓ Se consume energía y tiempo (efecto no deseado)
- ✓ Se enfría el autoclave → Agua fría en el PHE

Parámetros relevantes durante la esterilización


- ✓ Tiempo proceso → Varios autoclaves simultáneos, aumenta
- ✓ Consumo de energía
- ✓ Color final del producto (% de pérdida) → Superficie
- ✓ Letalidad bacterias (unidades tiempo) → Punto frío (centro)




El proceso

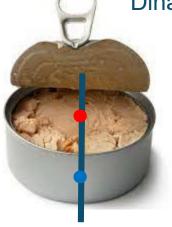
- ✓ Uso de vapor saturado para calentar agua (PHE)
- ✓ El agua entra en el autoclave (duchas) → Crece la temperatura
- ✓ Se matan las bacterias (efecto deseado)
- ✓ Se degrada la calidad del producto (efecto no deseado)
- ✓ Se consume energía y tiempo (efecto no deseado)
- ✓ Se enfr

 ía el autoclave

 → Agua fr

 ía en el PHE

Plateau: Usar temperatura variable mejora el proceso



Ecuación de color

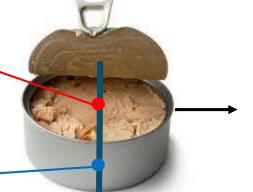
$$\frac{dlog_{10}(C)}{dt} = -\frac{1}{D_{ref}} 10^{\frac{T_s}{Z_{c,ref}}}$$

Ecuación de letalidad

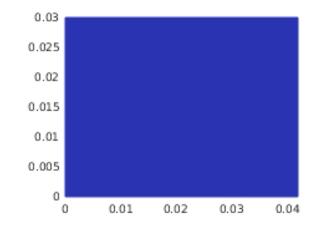
$$\frac{dF_0}{dt} = 10^{\frac{T_0 - T_{ref}}{Z_{ref}}}$$

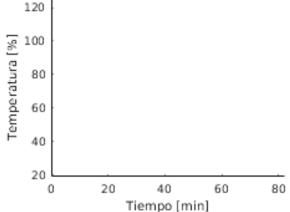
Dinámica de la lata

- ✓ Temperatura en todo el producto → Ecuaciones en derivadas parciales
- ✓ Letalidad → Usando la temperature en el centro
- ✓ Color → Usando la temperature en la superficie

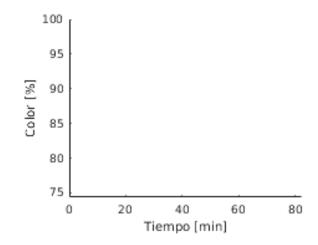

Dinámica de la lata

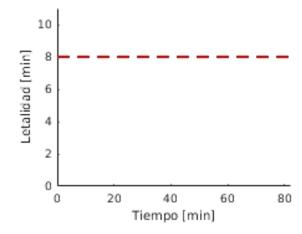
Ecuación de color


$$\frac{dlog_{10}(C)}{dt} = -\frac{1}{D_{ref}} 10^{\frac{T_s}{Z_{c,ref}}}$$


Ecuación de letalidad

$$\frac{dF_0}{dt} = 10^{\frac{T_0 - T_{ref}}{z_{ref}}}$$


Dinámica de la lata



Dinámica de la lata

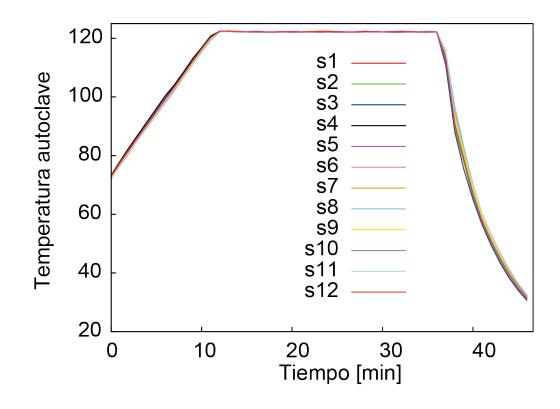
- ✓ Temperatura en todo el producto → Ecuaciones en derivadas parciales
- ✓ Letalidad → Usando la temperature en el centro
- ✓ Color → Usando la temperature en la superficie

Variabilidad en los productos

Causas de la variabilidad:

Diferencia de temperaturas en el autoclave

Diferencia en el producto envasado



Causas de la variabilidad:

- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado

Causas de la variabilidad:

- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado
 - ✓ Distinta cantidad de producto/líquido de relleno
 - ✓ Distinta compactación del producto
 - ✓ Diferencias en la transmisión de calor
 - ✓ Cada lata se calienta de forma "distinta"

Causas de la variabilidad:

- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado
 - ✓ Distinta cantidad de producto/líquido de relleno
 - Distinta compactación del producto
 - Diferencias en la transmisión de calor
 - Cada lata se calienta de forma "distinta"

Variabilidad en los parámetros

Causas de la variabilidad:

- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado
 - ✓ Distinta cantidad de producto/líquido de relleno
 - ✓ Distinta compactación del producto
 - ✓ Diferencias en la transmisión de calor
 - ✓ Cada lata se calienta de forma "distinta"

Caracterización

Variabilidad en los parámetros

Estimación de parámetros:

- Para cada tipo de lata → Cinco ciclos de esterilización
- Medida de T en tres puntos de la lata
- Datos experimentales de cuatro ciclos → Una estimación coeficientes térmicos

Causas de la variabilidad:

- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado
 - ✓ Distinta cantidad de producto/líquido de relleno
 - ✓ Distinta compactación del producto
 - ✓ Diferencias en la transmisión de calor
 - ✓ Cada lata se calienta de forma "distinta"

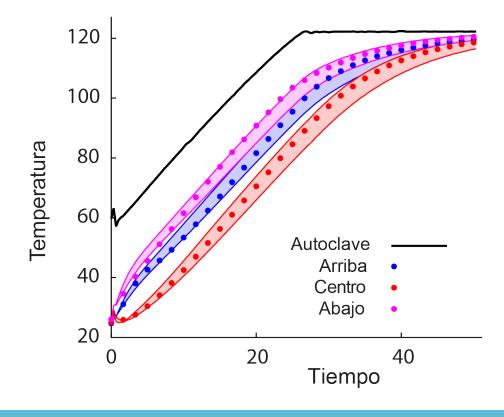
Caracterización

Variabilidad en los parámetros

Estimación de parámetros:

- Para cada tipo de lata → Cinco ciclos de esterilización
- Medida de T en tres puntos de la lata
- Datos experimentales de cuatro ciclos → Una estimación coeficientes térmicos

	Parameter	
$\alpha_p [\mathrm{m}^2 \mathrm{s}^{-1}]$	$h_t [\mathrm{m s}^{-1}]$	$h_b [\mathrm{m s}^{-1}]$
1.31×10^{-7}	9.56×10^{-5}	2.57×10^{-4}
1.32×10^{-7}	8.15×10^{-5}	2.86×10^{-4}
1.38×10^{-7}	7.85×10^{-5}	1.70×10^{-4}
1.29×10^{-7}	9.96×10^{-5}	2.66×10^{-4}
1.35×10^{-7}	8.07×10^{-5}	2.42×10^{-4}
1.33×10^{-7} 3.48×10^{-9}	8.72×10^{-5} 9.68×10^{-6}	2.44×10^{-4} 4.47×10^{-5}
	1.31×10^{-7} 1.32×10^{-7} 1.38×10^{-7} 1.29×10^{-7} 1.35×10^{-7} 1.33×10^{-7}	$\begin{array}{cccc} 1.31 \times 10^{-7} & 9.56 \times 10^{-5} \\ 1.32 \times 10^{-7} & 8.15 \times 10^{-5} \\ 1.38 \times 10^{-7} & 7.85 \times 10^{-5} \\ 1.29 \times 10^{-7} & 9.96 \times 10^{-5} \\ 1.35 \times 10^{-7} & 8.07 \times 10^{-5} \\ 1.33 \times 10^{-7} & 8.72 \times 10^{-5} \end{array}$


Causas de la variabilidad:

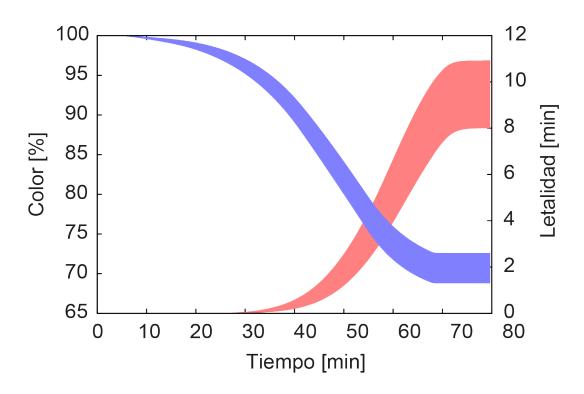
- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado
 - ✓ Distinta cantidad de producto/líquido de relleno
 - ✓ Distinta compactación del producto
 - ✓ Diferencias en la transmisión de calor
 - ✓ Cada lata se calienta de forma "distinta"

Caracterización
Variabilidad en los parámetros

Validación:

- Media y desviación estándar de los parámetros
- Distintas combinaciones de parámetros

Causas de la variabilidad:


- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado
 - ✓ Distinta cantidad de producto/líquido de relleno
 - ✓ Distinta compactación del producto
 - ✓ Diferencias en la transmisión de calor
 - ✓ Cada lata se calienta de forma "distinta"

Caracterización

Variabilidad en los parámetros

Validación:

- Media y desviación estándar de los parámetros
- Distintas combinaciones de parámetros
- Impacto en letalidad y calidad

Causas de la variabilidad:

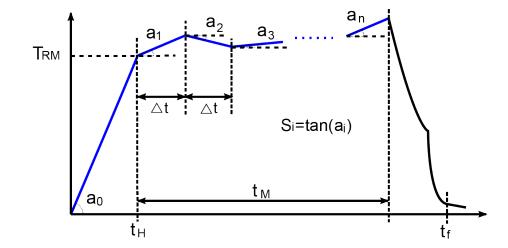
- Diferencia de temperaturas en el autoclave
 - ✓ Se asumen despreciables
 - ✓ Fácilmente medible en distintos puntos
- Diferencia en el producto envasado
 - ✓ Distinta cantidad de producto/líquido de relleno
 - ✓ Distinta compactación del producto
 - ✓ Diferencias en la transmisión de calor
 - ✓ Cada lata se calienta de forma "distinta"

Validación:

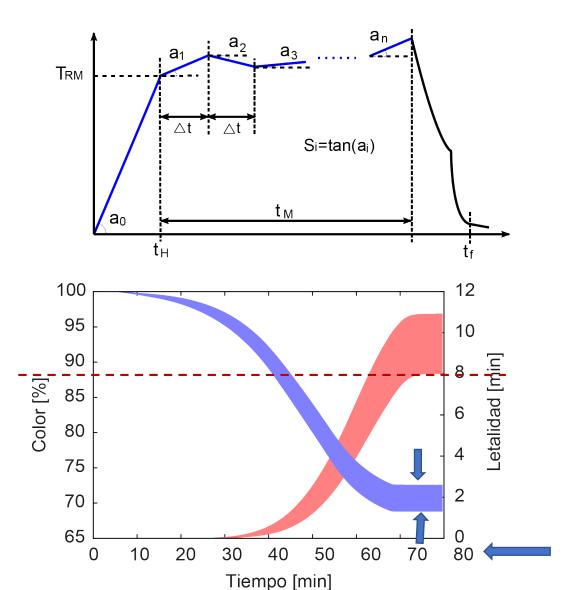
- Media y desviación estándar de los parámetros
- Distintas combinaciones de parámetros
- Impacto en letalidad y calidad

Optimización:

Se debe considerar la Variabilidad


Optimización del proceso considerando variabilidad

Optimización multiobjetivo: Calcular perfil de esterilización



Optimización multiobjetivo: Calcular perfil de esterilización

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)

Optimización multiobjetivo: Calcular perfil de esterilización

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Definir malla en 2 objetivos (tiempo, variabilidad)
 - ✓ Multiobjetivo → Un objetivo (maximizar calidad para cada punto de la malla)

Minimizar
$$T_{R_M}, t_M, S \in \mathbb{R}^{n+2} \ J := [-C_{media}, C_{max} - C_{min}, t_f] \in \mathbb{R}^4$$

Sujeto a: Din. alimento (EDP),

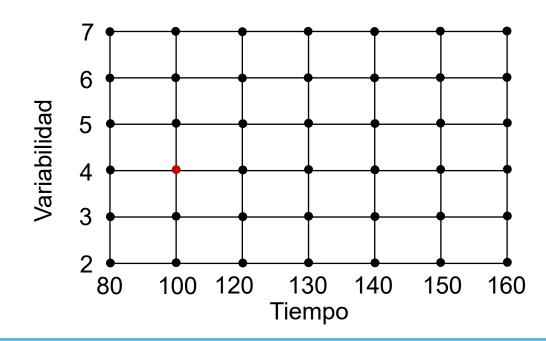
Din. esterilizador y PHE (EDO),

$$\mathcal{F}_0(T_{R_M}, t_M, S, \mu_{\alpha_p} - c\sigma_{\alpha_p}, \mu_{h_t} - c\sigma_{h_t}, \mu_{h_b} - c\sigma_{h_b}) \geq 8,$$

$$T_{\min} \le T_{R_M} \le T_{\max}$$
, $t_{\min} \le t_M \le t_{\max}$, $s_{\min} \le S_i \le s_{\max}$.

Optimización multiobjetivo: Calcular perfil de esterilización

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Definir malla en 2 objetivos (tiempo, variabilidad)
 - ✓ Multiobjetivo → Un objetivo (maximizar calidad para cada punto de la malla)

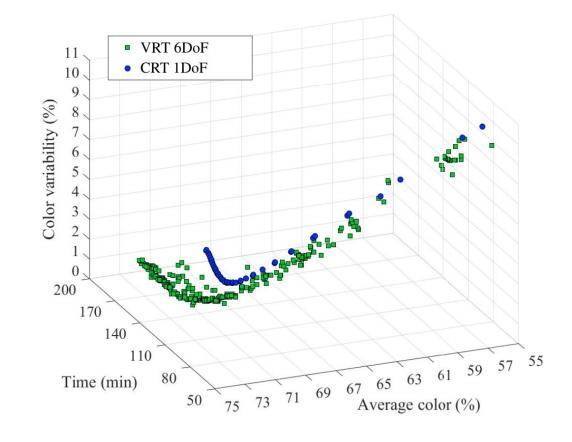

Minimizar
$$T_{R_M}, t_M, S \in \mathbb{R}^{n+2} \ J := [-C_{media}, C_{max} - C_{min}, t_f] \in \mathbb{R}^4$$

Sujeto a: Din. alimento (EDP),

Din. esterilizador y PHE (EDO),

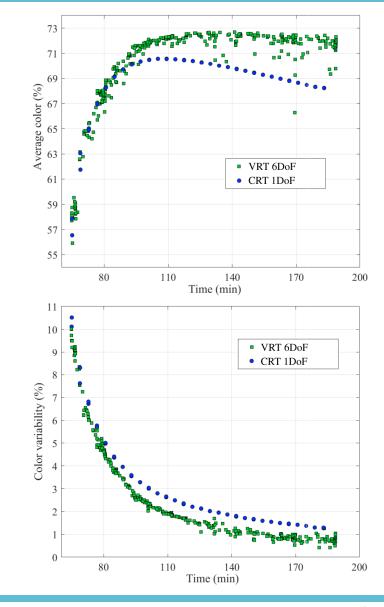
$$\mathcal{F}_0(T_{R_M}, t_M, S, \mu_{\alpha_p} - c\sigma_{\alpha_p}, \mu_{h_t} - c\sigma_{h_t}, \mu_{h_b} - c\sigma_{h_b}) \geq 8,$$

$$T_{\min} \le T_{R_M} \le T_{\max}$$
, $t_{\min} \le t_M \le t_{\max}$, $s_{\min} \le S_i \le s_{\max}$.



Optimización multiobjetivo: Calcular perfil de esterilización

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Definir malla en 2 objetivos (tiempo, variabilidad)
 - ✓ Multiobjetivo → Un objetivo (maximizar calidad para cada punto de la malla)
- Herramientas: desigualdad de Jensen, Región de pertenencia, optimizador NLP basado en gradiente (diferenciación automática)



Optimización multiobjetivo: Calcular perfil de esterilización

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Definir malla en 2 objetivos (tiempo, variabilidad)
 - ✓ Multiobjetivo → Un objetivo (maximizar calidad para cada punto de la malla)
- Herramientas: desigualdad de Jensen, Región de pertenencia, optimizador NLP basado en gradiente (diferenciación automática)

Optimización dinámica basada en eventos:

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)

Nuevo enfoque: más apropiado para recalcular los perfiles durante el proceso

Optimización dinámica basada en eventos:

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Pesar cada objetivo → Problema un objetivo

Nuevo enfoque: más apropiado para recalcular los perfiles durante el proceso

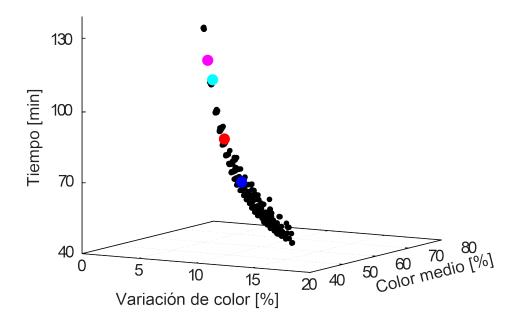
Problema un multiobjetivo

$$\min_{T_{R,sp}(t_k),t_h \in \mathbb{R}^{n+2}} \quad J := [-\bar{C}_s,C_{s,max}-C_{s,min},t_f] \in \mathbb{R}^3$$

$$\text{Pesos en los objetivos}$$

Problema un objetivo

$$\min_{T_{R,sp}(t_k),t_h \in \mathbb{R}^{n+2}} J = \{w_1 \bar{C}_s + w_2 (C_{s,max} - C_{s,min}) + w_3 t_f \}$$

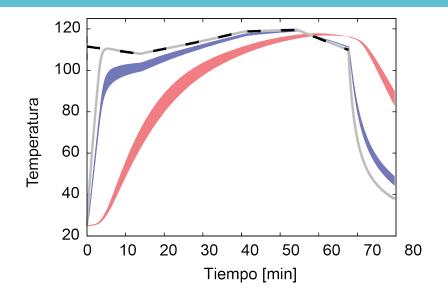

Optimización dinámica basada en eventos:

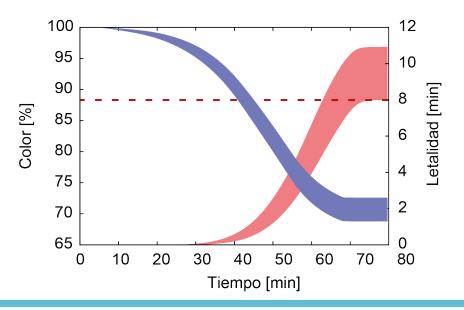
- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Pesar cada objetivo → Problema un objetivo

Problema un objetivo

$$\min_{T_{R,sp}(t_k),t_h \in \mathbb{R}^{n+2}} J = -w_1 \bar{C}_s + w_2 (C_{s,max} - C_{s,min}) + w_3 t_f$$

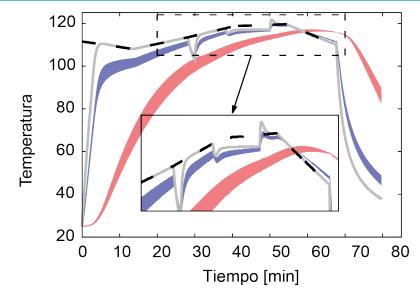
Dependiendo de los pesos, distintas soluciones

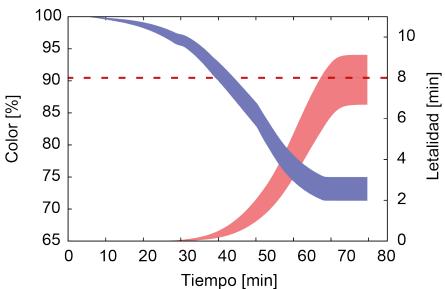




Optimización dinámica basada en eventos:

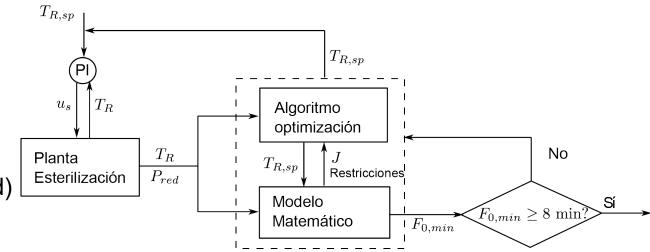
- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Pesar cada objetivo → Problema un objetivo





Optimización dinámica basada en eventos:

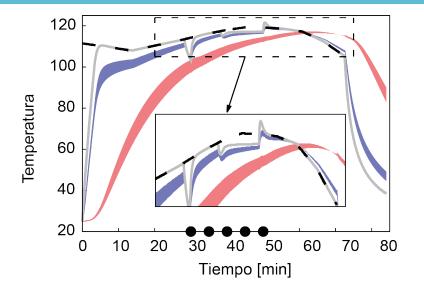
- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Pesar cada objetivo → Problema un objetivo
- Perturbaciones en el sistema → Problemas seguridad o suboptimalidad

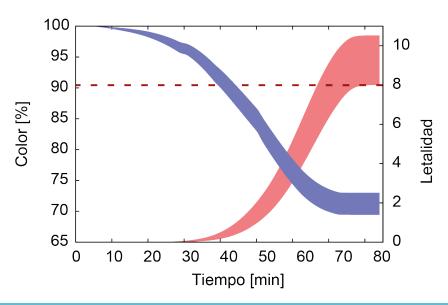


Optimización dinámica basada en eventos:

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Pesar cada objetivo → Problema un objetivo
- Perturbaciones en el sistema → Problemas seguridad o suboptimalidad
- Solución: recalcular perfiles en línea usando medidas del sistema

Esquema para recalcular los perfiles



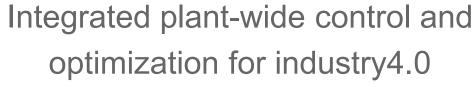


Optimización dinámica basada en eventos:

- Una restricción, tres objetivos
 - ✓ Asegurar letalidad de los productos
 - ✓ Minimizar tiempo de esterilización
 - ✓ Maximizar calidad de producto
 - ✓ Minimizar diferencia entre productos (variabilidad)
- Optimización
 - ✓ Pesar cada objetivo → Problema un objetivo
- Perturbaciones en el sistema → Problemas seguridad o suboptimalidad
- Solución: recalcular perfiles en línea usando medidas del sistema

Presentación basada en los resultados de las publicaciones:

- J.L. Pitarch, C. Vilas, C. de Prada, C.G. Palacín, A.A. Alonso (2021). Optimal operation of thermal processing of canned tuna under product variability, *Journal of Food Engineering*, 304, 110594.
- A.A. Alonso, J.L. Pitarch, Antelo, C. Vilas (2021). Event-based Dynamic Optimization for Food Thermal Processing: High-Quality Food Production under Raw Material Variability, Food and Bioproducts Processing, 127, 162-173.



Gracias por vuestra atención

Workshop final 20-21 junio, 2022